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This paper describes the results of numerical simulations ' for polydisperse 
sedimentation of equal-sized spheres, e.g. particles of different density. Using the 
Stokesian dynamics algorithm, mobility matrices are computed for random particle 
configurations and ensemble averages taken to  calculate the mean mobility matrices. 
It is shown that the settling velocities of individual particles species may be 
expressed in terms of two scalar functions of total volume fraction. These are the self- 
mobility Mo, ( - short-time self-diffusion coefficient) and the interaction mobility M,.  
This latter quality is related to the velocity of a force-free tracer particle in a 
suspension of identical particles subjected to a unit force. Numerical values for Mo 
and MI are calculated for a range of volume fractions from .$ = 0.025 to 0.50. All 
results show excellent agreement with the dilute theory of Batchelor. Simple 
algebraic expressions are given which well correlate the numerical results. 

1. Introduction 
The sedimentation of microscopic particles in a fluid suspension is a problem of 

long-standing interest in fluid dynamics. For particles of uniform size and density, 
the behaviour of the suspension is relatively well understood and can be characterized 
by the average settling velocity as a function of volume fraction u($). This velocity 
is often written in the form u($) = u*f$), where u* is the Stokes settling velocity for 
a single particle %(p,-p)ga2/p and f $ )  is a dimensionless quantity called the 
hindrance function. Comprehensive reviews on the subject of monodisperse 
sedimentation are given by Batchelor (1972, 1982) and Davis & Acrivos (1985). 
These authors describe the many experimental, numerical and theoretical studies of 
sedimentation leading to diverse predictions for the hindrance function f .  In 
addition, they discuss the influence of such features as particle configurations and 
Brownian forces on the predicted settling rates. 

The sedimentation of polydisperse suspensions with particles of varyzing size 
and/or density is a problem of greater complexity which has not received as much 
attention. The most obvious difference is that particles of varying type may well 
have different settling velocities. A rigorous theoretical development for dilute 
systems has been given by Batchelor & Wen (1982) and Batchelor (1982). Various 
experimental studies and empirical predictions are discussed by Davis & Birdsell 
(1988) who conducted experiments on a variety of bidisperse and tridisperse systems. 
More recently Bruneau el al. (1990) measured sedimentation rates in very dilute 
suspensions showing general agreement with the theory of Batchelor & Wen. The 
prediction of the individual settling velocities u ~ ( $ ~ ,  . . . , q5N) for each of N particle 
species is an unresolved problem in suspension mechanics. 

A surprising feature of polydisperse sedimentation is that suspensions which are 
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initially uniform may prove unstable leading to strongly non-uniform concentrations 
in the horizontal plane. These instabilities, first observed by Kynch (1952) appear as 
fingering phenomena with streams of unequal density. The polydispfxse instability 
has been the subject of numerous experimental studies, by Fessas & Weiland (1981, 
1984, and Weiland, Fessas & Ramarao (1984), and has been predicted theoretically 
by Batchelor & Janse van Rensburg (1986) and by Thiokas (1984, 1986). An 
alternative theory has been given by Cox (1990). Linear stability theory yields 
predictions for the onset of instability based on the individual settling velocities 
ui(#,) in the unperturbed homogeneous suspension. Thus even in the case of unstable 
systems, the prediction of the settling functions is the most important problem in 
polydisperse sedimentation. 

Given the difficulty of a theoretical analysis of non-dilute polydisperse sedi- 
mentation, we turn our attention to numerical simulation. The most promising 
approach appears to be the class of algorithms known as Stokesian dynamics 
developed by Brady & Bossis (1985,1988). This approach has yielded many valuable 
results for the dynamics of concentrated suspension, including studies of the effective 
viscosity, the sedimentation rate in monodisperse suspensions and the formation of 
structure in sheared suspensions. 

The Stokesian dynamics algorithm has been used in two classes of simulations. In 
dynamic simulations, the motion of individual particles is tracked over thousands of 
time steps. This has the disadvantage that it requires a large computational effort 
and simulations are limited to small particle samples. On the other hand, the history 
of the particle motion provides valuable information, not only for average settling 
rates, but also for detailed statistics on particle configurations and possible structure 
formation in the suspension. 

In contrast to the dynamic simulations, the Monte Carlo algorithms calculate the 
individual velocities for a given particle configuration and take ensemble averages 
over many configurations. These algorithms involve less computational effort per 
particle and may thus be employed with larger sample sizes. The validity of this 
approach depends on the availability of a collection of particle ensembles which 
accurately reflects the particle distribution in a real system. In a dynamic simulation, 
the history of the particle trajectories provides such a collection of samples ; however, 
there is no simple way to generate such a sample a priori for an arbitrary system. 
Under certain circumstances, the sample of particle configurations is well represented 
by that occurring in classic hard-sphere distributions. Phillips, Brady & Bossis (1988, 
hereafter referred to as PBB) have used such systems to model monodisperse 
dispersions, calculating sedimentation rates, effective viscosities and other transport 
properties. Ladd (1990) has extended the work of PBB to include higher-order 
representations of the hydrodynamic interactions. 

The simulation of polydisperse suspensions is in general far more challenging than 
that of monodisperse suspensions. Even in the case of a bidisperse suspension, the 
presence of different particle types will require a larger sample size. In addition, all 
properties are functions of two independent concentrations and $2, as well as 
parameters such as density ratios, size ratios, etc. These considerations preclude the 
implementation of large-scale dynamic simulations at this time. As an alternative, 
we consider Monte Carlo simulations for bidisperse suspensions with a hard-sphere 
distribution for the particles. This model for the ensemble of particle configurations 
is quite restrictive for polydisperse suspensions because differences in particle setting 
rate may affect the pair distribution function. Batchelor (1982) gives a comprehensive 
discussion of the effect of Brownian diffusion on the particle-pair distribution 
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function. Briefly, for very dilute systems, the relative motion of identical spheres is 
zero, hence any amount of diffusion is sufficient to render the pair distribution 
function uniform. When the relative velocity of particles is non-zero the pair 
distribution function becomes a function of the particle PBclet number based on this 
relative velocity. The sedimentation rate is affected not only by the direct action of 
Brownian forces, but also by the indirect effect on particle configuration. It is only 
in the asymptotic limit of low PBclet number, Pe = (u,*-u2*)a/D (where a is the 
particle radius, and D the diffusion coefficient), that we may assume a particle 
distribution dominated by random Brownian forces. Thus for dilute systems, any 
results from a random Monte Carlo simulation are strictly valid only in this limit. 

For non-dilute systems, the strict validity of the simulation is again confined to 
low PBclet number. There is, however, some hope that the results may be 
representative of more general behaviour. As an example, one may compare the 
settling rate (or permeability) for fixed random versus regularly ordered lattices. In 
dilute systems, particle interactions given an order-$ contribution for the former, but 
an order-$+ contribution for the latter. At moderate concentrations, however, the 
settling rates show qualitatively similar behaviour as the ordered versus disordered 
configuration has less effect on the overall transport properties. In the high 
concentration, close-packed limits, the effect of particle configuration again becomes 
significant as it determines the maximum concentration for relative particle motion. 
The point is simply that idealized particle configurations may provide some insight 
into the behaviour of systems at arbitrary PQclet number. 

Our goal then is to predict the average settling velocities for individual particle 
species in polydisperse suspensions whose statistical properties may be modelled by 
an idealized hard-sphere distribution. The individual particle velocities will be 
computed in a number of uncorrelated configurations to obtain an ensemble average 
for the settling rates. We restrict our study to spheres of equal size but varying 
density. As explained in $2, this restriction reduces the computational effort by 2 to 
3 orders of magnitude. The velocities are computed using the Stokesian dynamics 
algorithm as described by PBB. The governing equations and theoretical background 
are presented in $2, the Stokesian dynamics algorithm in $3, numerical results in $4 
and application to polydisperse instabilities is given in $5.  

2. Basic formulation 
Consider a cubic volume of side L containing a suspension of N spherical particles 

of radius a, suspended in a Newtonian fluid of density p and viscosity p. In a given 
configuration, we denote the particle position by r, and the particle density by pa. 
Here, the particles are numbered from 1 to N where we employ Greek subscripts 
exclusively for particle numbering. Each particle is acted upn by a forcef,, but is 
torque free. While the analysis applies to arbitrary forces, we shall be most interested 
in gravitational forces for whichf, = ($ra3)(p,-p)g. We suppose that the volume is 
replicated in a periodic manner to form an infinite suspension filling the space. As the 
number of particles in the cell grows large, the transport properties of the suspension 
will approach those of an infinite suspension with the same statistical properties. 

The governing equations are the Stokes equations and continuity equation for an 
incompressible Newtonian fluid 
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with boundary conditions on the particle surfaces u = u, + 0, x ( r  - r,) at I r - r, I = a,. 
The force f ,  on each particle is given, and the torque is zero. As noted previously we 
require periodicity with respect to a cube of sidc L .  

With these specifications, the problem is completely determined and one may in 
principle solve for the individual particle velocities u, in terms of the applied forces 
f a .  A brief description of the solution procedure (Stokesian dynamics) is given in the 
following section. Owing to the linearity of the equations, the velocities may be 
related to the forces through a mobility matrix Map such that 

The mobility matrix Map is the most uscful characterization of the particle 
interactions in a sedimenting suspension. To illustrate the relationship between the 
mobility matrix and the mean settling velocities, let us first consider a monodisperse 
suspension where each particle is of raidus a acted upon by an identical f = 67cpau*. 
The velocity of a given particle a is expressed 

and the average settling velocity for a particle in this instance is 

If the sample size were sufficiently large, this average settling velocity would 
approach the same value for all configurations with the same statistical particle 
distribution. Given the more modest sample size used in a typical simulation, we 
taken an ensemble average of ii over many configurations. The average mobility 
matrix is an isotropic function of volume fraction whose principal value is simply 
related to the hindrance function defined earlier ; that is, 

Next, consider the case of a bidisperse suspension with N,, N2 particles of types 1 
and 2 respectively. For the moment, these may have arbitrary sizes and forces. Once 
again, one may solve for the mobility matrix and calculate the average settling rates 
for each individual species. The individual velocities are expressed 

and the average velocities are 

for 01. in sets (1) and (2) respectively. 
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This is a far more challenging problem. In the first instance, one needs far larger 
sample sizes and/or far more configurations owing to thc two different particle types. 
Furthermore, if one particle is substantially larger than the other it may take a factor 
O(a,/a,)3 more particles of the smaller 2 type to obtain a reasonable sample. Second, 
the average settling velocities are functions of two independent variables, and 
separate average mobility matrices must be computed for each combination of 
volume fractions ($*, qb2). Thus cach mobility matrix will be significantly harder to 
compute, more configurations will be needed for each ($,, 4,) data point and far more 
points will be needed for +'($,, 9,) as opposed to  f ( $ ) .  

Owing to these complications, we defer consideration of the most general system 
to a later time. Instead, we consider a polydisperse suspension of equal-sized spheres 
acted upon by arbitrary forces, e.g. particles of different density. For suspensions 
with random particle distributions, the probability of a particle of type i occupying 
a given position is $i/$ and all positions are equally probable. Thus the mobility 
matrix is a function of geometry only ; it is independent of the particle types, and the 
average mobility matrices are functions only of total volume fraction $. With these 
results, the averaging process is greatly simplified, leading to 

We find it convenient to  define the self-mobility matrix Mo($) and the interaction 
mobility matrix MI(#) as 

Each of these matrices is isotropic, and hence is completely characterized by its 
scalar principal value Mo,  MI respectively. The self mobility &lo(#) represents the 
average velocity of a particle subject to a unit force in a suspension of force-free 
particles. This is of course the same (within a scaling factor) as the short-time self- 
diffusion coefficient, previously computed by PBB, i.e. DS, = kTMo. The interaction 
mobility M, represents the average velocity of a force-free tracer particle in a 
suspension of particles subjected to an identical unit force. With these definitions, 
thc average velocity of species i may be written in the compact form 

In fact, this result immediately generalizes to a polydisperse suspension with any 
number of different particle forces. We simply define the average force 

where the summation is either over particle species i or over individual particles a. 
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The mean settling velocity for a particle of species i in a polydisperse suspension 
of equal-size spheres is then written 

This result is the most important analytical result of the present effort. Combined 
with the numerical evaluation of the scalar functions Mo and M ,  as functions of q5, 
it provides a complete description of the average settling velocities for suspensions 
of equal-sized spheres. For a monodisperse suspension, we found the settling rate is 
characterized by a single scalar functionf(q5) or M(q5) ; for the present circumstances 
the settling velocities may be expressed in terms of two scalar functions of q5. 
Equation (14) is written in terms of M o  and MI; however, comparing (6) with (lo), 
(1 1) we have the simple relationship M = Mo + M I ,  thus we might just as well employ 
M ,  and &! or Mo and f (  4). 

3. Numerical algorithms 
To make use of the formalism in the preceding section, we require a numerical 

procedure for calculating the global mobility matrix MaI for a system of N equal- 
sized spherical particles. We have chosen to  implement the Stokesian dynamics 
algorithm. This algorithm has been thoroughly described elsewhere, and we shall not 
repeat the detailed development or justification. A comprehensive discussion is given 
by Brady & Bossis (1988) and Brady et al. (1988) and a description of the specific 
implementation for Monte Carlo simulations in periodic systems is given by PBB. We 
shall restrict ourselves to a brief description of the fundamental feature of the 
met hod. 

Following Brady & Bossis, one may construct a grand resistance matrix 53 relating 
the force, torque and stresslet of a particle to the velocity, angular velocity and strain 
rate : 

u- U" ($) =-w (a!--!-) 
The inverse of this matrix is defined as the grand mobility matrix, A= 9 - l .  In the 

(16) 

Stokesian dynamics algorithm the grand resistance matrix is calculated as 

w = (&")-' +a,, - a m Z B  

In  the first term dm is an approximation to the grand mobility matrix formed via 
a far-field multipole expansion. Its inverse includes multibody interactions, and it is 
by itself a good approximation for widely dispersed particles. The second term W,, 
is the exact two-body resistance matrix. The final term is the far-field approximation 
of the two-body resistance matrix. If particles are far apart, the last two terms cancel 
and the first gives a good approximation to the resistance matrix. If two particles are 
close together and well separated from others, the first and last terms cancel and the 
middle term gives an accurate representation. In  cases where many particles are in 
close proximity, the accuracy will depend on the order of terms retained in the 
multipole expansions. It is well known that straightforward evaluation of multipole 
interactions leads to  non-convergent sums owing to the strong r-l interaction of the 
Stokeslets. These sums may be made convergent by a number of techniques as 
described by PBB. We note that convergence follows automatically in periodic 
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systems where the singularities and mobility tensors are based on the periodic form 
of the fundamental solution. Brady & Bossis review a large number of test cases 
showing excellent results with the force-torque-stresslet (FTS) level algorithm. This 
is the form adopted in the present effort. Note that the mobility matrix Mab required 
in our study is a submatrix of the grand mobility matrix d f o u n d  as the inverse of 
a?. 

Given a technique for calculating the mobility matrix, the next step in the method 
is to generate particle distributions in the periodic box. For low volume fractions 
($ < 0.25) particles may be added by sequential random placement in the box. At 
higher concentrations, however, the probability of finding an open position becomes 
vanishingly small. To overcome this difficulty, we follow PBB and place all particles 
in the cell in the initial step. Particles are then subjected to random displacements 
until their positions are statistically uncorrelated with the initial configuration. Two 
initial configurations were employed : the particles on a simple cubic lattice spanning 
the cell or close packed in one corner of the cell. The number of particle displacements 
was adjusted to  achieve linear correlation coefficients rc < 0.5. Good agreement was 
found with the mean radial distribution function g(r) given by Barker & Henderson 
(1971). Results were found to  be independent of the initial configuration and 
consistent with sequential random addition a t  concentrations ($ < 0.25) for which 
that approach was viable. In  all respects, the results of this process were consistent 
with the experience reported by PBB. At the highest concentrations ($ > 0.45) as 
many as 10000 attempted moves per particle were employed to  ensure uncorrelated 
samples. We note that the calculation of individual average settling velocities for 
particle species in bidisperse suspensions was more susceptible to fluctuations than 
the single settling velocity in monodisperse systems. Thus more configurations were 
needed to approach a smooth result. This behaviour is consistent with expectations 
based on the respective definitions of H, M ,  and M I .  More specifically, because is 
defined as a double sum over all particles and Mo is a single sum, one expects 
smoother behaviour for H. 

4. Numerical results 
To demonstrate the accuracy of our Stokesian dynamics alogrithm, a number of 

numerical tests were performed. First, we calculated the drag coefficient for a 
configuration of three spheres in an equilateral triangle. These results showed 
excellent agreement with the analytical solution of Kim (1987) for all separations. 
Next, we calculated the permeability for a simple cubic lattice of spheres and 
compared i t  with the high-order numerical results of Zick & Homsy (1982). Again, 
excellent agreement was found, consistent with the reports of Brady & Bossis (1988). 
Based on these results and on the consistency with the results of PBB described 
below, we conclude that an accurate and reliable implementation of the FTS 
algorithm was achieved. For further tests and discussion of the algorithm itself, the 
reader is referred to the review article by Brady & Bossis (1988) and to  PBB. 

For random hard-sphere suspensions, we calculated the mobility matrices and 
sedimentation velocities for a range of particle volume fractions from q5 = 0.025 to  
0.50. Several simulations were performed at each concentration, employing 27, 64 
and 100 particles. These computations parallel those of PBB except that those 
authors used smaller sample sizes up to 64 particles, and most importantly did not 
calculate M I .  The results for the calculation of the self-mobility M ,  are shown in 
figure 1. The open symbols showing the result for various sample sizes are consistent 
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FIGURE 1. Self-mobility Mo as a function of volume fraction. Number of particles in sample size: 
A, 27 ; 0, 64; 0, 100; filled circles are extrapolated values for N - +  co. Continuous lines are least- 
squares curves (17) fit to extrapolated data: -, present results; ---, data of Ladd (1990). 

with results of PBB (up to their maximum of 64 particles) for the short-time self- 
diffusion coefficient. The filled circles show the extrapolated values for N +  00. The 
extrapolation is based on a simple analysis to correct for thc finite size of the periodic 
system (PBB). At low volume fractions, periodic images of the force on sphere a 
induce a velocity O ( $ / N ) i .  Based on the definition, these images must be subtracted 
off to obtain the correct value for Mp. In  the dilute limit, one may subtract off 
Hasimoto’s (1959) value 1.7601 ( $ / N ) s ,  or simply extrapolate using the results for 
N = 27, 64, 100 assuming an error - N-f. Each method gives comparable results a t  
low $ and both yield results consistent with the low-volume-fraction asymptote 
( 1  - 1.83$) given by Batchelor (1976). At higher volume fractions, the images of the 
forces are screened by the intervening spheres and the $ dependence is modified while 
the basic N-i dependence remains. In  this case, one may use Hasimoto’s result with 
a screening correction (Ladd 1990) or use the direct extrapolation method as before. 
We prefer to  rely to direct extrapolation. The solid symbols in figure 1 are computed 
assuming an N-S error a t  all $. To minimize scatter, the three data sets (27, 64, 100) 
were fit in a least-squares sense to obtain a single extrapolated value. 

For convenience, we have calculated a least-squares fit (as a function of 6) for the 
extrapolated data, matching the intercept and the asymptotic slope a t  low $: 

(6xp)M0 = 1 - 1.83$+0.4084$2-0.2108$3. (17) 

This function is shown as the solid line in figure 1. Ladd (1990) simulated sedimenting 
suspensions using an algorithm similar to that of PBB, but including higher-order 
multipole expansions. His results are in excellent agreement with the present 
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FIGURE 2. Interaction mobility M ,  as a function of volume fraction. Number of particles in sample 
size: A, 27; 0, 64; 0,  100. Continuous lines are least-squares curve (17), (18) fit to the 
extrapolated data: -, present results; ---, data of Ladd (1990). 

simulation as shown in figure 1. Both simulations are also consistent with the 
theoretical prediction of Beenakker & Mazur (1984). 

In figure 2 we plot the interaction mobility M ,  using the same symbol conventions 
as in figure 1.  The asymptotic behaviour for small $ (-4.72$) may be inferred from 
Batchelor’s (1972, 1976) results forMo and forf($) = (1 -6.55$). From its definition, 
recall that MI is the velocity of a force-free tracer particle in a suspension of particles 
with identical forces$ Owing to this result, there are no image forces for the tracer 
particle itself. In a dilute suspension, the periodic image forces of the other particles 
introduce an error - $($/N) i  - $$ N-4. This error does not affect the limiting slope a t  
small $, hence all results show reasonable agreement with Batchelor’s asymptotic 
theory. As before, we extrapolate to N+ 00 assuming an N-5 error and show thc 
results as the, solid symbols on figure 2. There is substantial scatter in our 
extrapolated data for MI. While the N = 100 results are fairly smooth, the N = 64, 
and especially N = 27 results are relatively noisy. The solid line shown in figure 2 is 
the result of a least-squares fit (17),  (18) as described below. In computing the latter 
result, we have arbitrarily excluded the data points at $ = 0.10 and 0.15, which seem 
excessively affected by extrapolation error. Ladd did not calculate M I  explicitly, but 
the result is easily inferred from his calculations for Mo andf($). The resulting curve 
shown in figure 2 is in excellent agreement with the present results. One might have 
some reservations about the large magnitude of the N +  00 correction. Initially, we 
had significant concerns about this effect; however, we note that Ladd’s 
extrapolations were of comparable size, and the data he presented are somewhat 
smoother than our own. 
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FIGURE 3. Hindrance function /($) = 6np& as a function of volume fraction. Theoretical curves 
based on least squares fit (1 8) : -, present results ; - - - , results of Ladd (1990). Experimental 
curves recommended by: ----, Garside & Al-Dibouni (1977); ----, Buscall et al. (1982). 

Figure 3 shows the calculated values for the hindrance function f(4) = 6np& as 
a function of volume fraction. These values are based on the result M = Mo +MI 
using the extrapolated values for Mo andM,. As with the individual mobility tensors, 
these results are in excellent agreement with Batchelor's asymptotic theory for low 
q5. This result is in contrast to PBB who calculated f(q5) but could not discern 
sufficient trend in the data to obtain a reasonable extrapolation. If one considers Mo 
andM, separately, the clean extrapolation ofMo may be combined with the accurate 
low-# results for MI to obtain the correct asymptotic behaviour. In  the present 
circumstances, the availability of data for N = 100 allows a reasonable extrapolation 
for the MI data as well. A least-squares fit to our f (4 )  data yields 

(18) f ( 4 )  ( 6 n p a ) Z  = (1 - 4)"" (1 + 3.458 C)2 + 8.990 C)'). 

This function is shown as the solid curve in figure 3. The algebraic function to fit the 
MI data of figure 2 is obtained as the difference M-Mo using (17) and (18) 
respectively. As shown in figure 3, our results are in excellent agreement with those 
of Ladd, and in reasonable agreement with the experimental curves proposed by 
Garside & Al-Dibouni (1977) and Buscall et al. (1982). We note further that Ladd 
demonstrated consistency with the theory of Beenakker & Mazur. 

In comparing the results of PBB and Ladd for f ( $ ) ,  one finds a substantial 
difference which can be attributed to two factors in the latter effort : the inclusion of 
higher-order multipoles and the extrapolation for large N .  In our implementation, we 
have included the N-+ co extrapolation, but retained the FTS-order truncation in the 
multipole expansion. Given the excellent agreement of our results with those of 
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FIGURE 4. Settling velocity u,/u: as a function of volume fraction q52 for different values of 
Bidisperse suspension with density ratio y = - 1. Curve labelled 0 is for dilute limit of 

Ladd, we conclude that the effect of finite system size N is the most important 
limitation of the method. With sufficiently large system sizes, and sufficiently large 
ensembles to ensure smooth data, excellent results may be achieved with the FTS 
Stokesian dynamics algorithm. 

The algebraic functions (17), (18) combined with the general expression (14) 
provide predictions for the settling velocities of individual species in a polydisperse 
suspension of equal-sized spheres. This constitutes the principal result of this paper. 
To examine further the character of polydisperse sedimentation, we consider some 
specific examples for bidisperse systems. Following Batchelor, we define the density 
ratio y = ( p 2 - p ) / ( p l - p ) ,  where p is the density of the fluid and pl ,  p2 are the 
densities of the respective particle species. Figure 4 shows the settling velocity ul/uT 
as a function of q52 for a suspension with density ratio y = - 1. By symmetry, the two 
particle species have identical settling behaviour, with u ~ ( $ ~ ,  q52) = - u ~ ( $ ~ ,  Each 
of the curves in figure 4 (for different values of q5*) may be explained as the result of 
three separate phenomena. First, the addition of small amounts of species 2 will 
induce a backflow in the overall suspension. For values of y < 0, the backflow is in 
the direction of u: and the settling velocity u1 increases. Second, as the concentration 
of species 2 increases, there will be an increase in close encounters between the 
particle species. This will retard the motion of each species and can result in velocity 
reversal if one species has a smaller density difference. In figure 4 where the density 
differences are equal, the close particle interactions counteract the backflow effect, 
leading to a maximum velocity around q5 = 0.10 and monotonic decay thereafter. 
The third effect is that of hindered settling which reduces the magnitude of all 
settling velocities independent of direction. This last distinction is somewhat 
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FIGURE 5. Settling velocities of particles in bidispersr suspension with density ratio y = 0. Settling 
velocities non-dimensionalized with respect to  dense particle u:. ('urves labelled 0 are for dilute 
limit of respective species. ( a )  u,/u: as function of $z for various 4,. ( h )  u,/uT as  function of 9, for 
various 4,. 
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FIGURE 6. Settling velocity u,/u: as a function of volume fraction 4, for different values of 
Ridisperse suspension wit,h density ratio y = 5. Curve labelled 0 is for dilute limit of $*. 
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arbitrary, since backflow and close particle encounters both contribute to  the 
hindered settling effect. 

Figure 4 illustrated the case of equal but opposite density differences. Next we set 
y = 0,  with species 1 dense, and species 2 neutrally buoyant. The velocities u1 and up 
arc plotted in figures 5 ( a )  and 5 ( b )  respectively where each velocity is scaled relative 
to u:, because uz F 0. The behaviour of u1 is the simplest to explain. There is no 
backflow effect, and small retardation effect, because species 2 is neutrally buoyant. 
Thus each curve in figure 5(a)  shows simple monotonic decay owing to the effect of 
hindered settling. Figure 5 ( b )  is similar to figure 4 in the behaviour it shows. At first, 
the particle velocity increases, as the neutrally buoyant particles are carried in the 
backflow of species 1.  At higher concentrations of q51, the close particle interactions 
counteract the backflow and the velocity decreases ; finally, hindrance effects cause 
a further decrease in the magnitude of the velocity. As the concentration approaches 

> 0.50, the self-mobility Mo would approach zero, and MI would cross the axis, 
becoming positive. I n  this limit, both particle species would settle at that same rate 
dictated by f 

The last example we give is for both species dense with y = f .  The velocity of the 
denser species u1 is quite similar to that shown in figure 5 ( a )  and is not shown. The 
velocity of the less-dense species 2 is shown in figure 6. The curves in this figure are 
influenced by the same factors as those in figure 5(b).  At low q5,, backflow is the 
strongest effect and the velocity of the lighter particle decreases rapidly. As close 
particle interactions become more important, the velocity reaches a minimum and 
starts to increase. At some q5 > 0.50, the velocity will again become positive with 
both species settling a t  the same rate. 
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For particle species with arbitrary density ratios, (14) may be used to produce 
settling curves similar to  those in figures 4-6. A few general trends may be noted. For 
density differences of opposite sign, y > 0, the settling velocity of species 1 (with 
larger density difference) will lie between the results of figure 4 and figure 5(a ) .  There 
may be some initial increase in settling rate if y is large enough, but the settling rate 
will always decrease at  larger values of q52. The settling velocity u2/u,* (of species with 
smaller density difference) will always increase initially and its behaviour will 
resemble that shown in figure 4. (Its limiting behaviour will not look like figure 5 ( b )  
unless we rescale with u:.) 

For density differences of like sign, y > 0, the settling velocity of species 1 (with 
larger density differences) will always resemble figure 5 ( a ) ;  there will never be any 
increase in settling velocity. The settling velocity u2/u,* (of species 2 with smaller 
density difference) will never increase in its original direction, but it may reverse 
direction and increase in magnitude if the density ratio y is small enough. The 
settling curves in the latter case will lie between figures 5 ( b )  and 6. 

We end this section with a note of caution. These results apply for low-PQclet- 
number systems where the pair distribution function is independent of the density 
ratio. The behaviour may be drastically different a t  high PBclet number, especially 
for dilute systems. One should consult Batchelor & Wen (1982) for a general 
discussion of that regime. 

5. Instability of bidisperse suspensions 
At moderate concentrations, it has been observed that a bidisperse suspension may 

become unstable if the particles have different settling rates. The criterion for 
instability given by Batchelor & Janse van Rensburg (1986) and by Thiokas (1986) 
is 

With the expression for settling velocities and mobilities calculated above, this 
expression may be evaluated for arbitrary concentration. The neutral stability 
curves are shown in figure 7. for a number of bidisperse systems with density ratios 
y. The dashed lines show buoyant-dense systems ( y  < 0) while the solid lines show 
denseaense systems (y  > 0).  For density ratios y > 0.40, the suspension is always 
stable. 

As y increases from - 1,  one observes a monotonic progression to higher values of 
q51 a t  constant q5. This trend may be explained by examining the criterion (19) and 
the settling curves in figures 4-6. For instability, the second term in (19) must be 
negative so that the factors aul/aq52 and au2/aq5, must be of opposite sign, and 
sufficiently large to offset the first term. For y < 0, y provides the sign change, and 
the two particles should be in the same relative position on figure 4; that is, both 
should have positive slope or both have negative slope. If the magnitude of the term 
is not large enough on the up slope (q52 < 0.10) one must jump across the crest, say 
' to q52 > 0.15 before the slopes are again of comparable size. At these higher volume 
fractions, the magnitude of the first term in (19) is decreased and instability sets in. 
For y = 0, aul/aq52 is always negative (figure 5a)  and we look for au2/a$l to  be 
positive. As shown in figure 5 ( b ) ,  this first occurs a t  @, greater than about 0.12 and 
increases as q52 increases. Values of y > 0 are similar to the case y = 0, where we again 
require au2/dq5, > 0. From figures 5 ( b )  and 6, i t  is apprent that the concentration q51 
a t  which this occurs steadily shifts to higher values as y increases. 
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FIGURE 7. Neutral stability curves for the instability of a bidisperse suspension aa predicted by 
(19), for various values of density ratio y.  Dashed lines show buoyanedense systems (y < 0 ) ,  while 
solid lines show dense-dense systems (y > 0). 

A rough comparison with the experimental data of Fessas & Weiland (1981, 1984) 
and Whitmore (1955) is given in figure 8 for the two cases y = 0 (solid circles) and 
y = - 1 (open circles). The continuous lines are the respective neutral stability curves 
from figure 7. The predictions capture the qualitative behaviour quite well but are 
shifted by approximately 5-10 % in volume fraction. There are several factors which 
might contribute to this discrepancy. First is the fact that Stokesian dynamics 
algorithm employs a low-order truncation in the multipole expansion and might not 
be accurately modelling the hydrodynamic interactions for concentrated suspensions. 
To investigate this possibility, we computed stability curves based on Ladd’s 
mobility results. The curves were qualitatively similar with at  most a 1-2 YO shift in 
volume fraction over most of the range. The only larger departures occurred for total 
volume fraction q5 > 0.45, which is well above the range of interest. The second factor 
is the possibility of experimental error, owing to the extreme difficulty in obtaining 
closely monodisperse-sized particles. We do not believe this factor to be significant 
for systems with y < 0, because even a factor of 2 error in particle velocity (say from 
y = - 1 to -0.5) yields a negligible shift in the position of the neutral stability curve. 

The third concern, which we feel is the most important, is the fact that 
experiments were performed at conditions with high PBclet numbers where particle 
configurations may differ from the hard-sphere distributions used in this paper. It is 
useful to recall the respective expressions for the settling velocity under dilute 
conditions (Batchelor & Wen 1982) ; 

low PBclet number ul/u: = l-6.55q5+(-l1.83-4.72y)q5,; 
high PBclet number : ul/u: = 1 - 6.55 q5 + ( - 2.52 - 0.13 y )  q52. 
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FIGURE 8. Comparison of stability criterion (19) with experiments : 0 ,  neutrally buoyant-dense 
system y = 0, Whitmore (1955); 0, buoyant-dense system y = - 1, Fessas & Weiland (1981, 
1984). The lines are the respective neutral stability curves from figure 7 .  

The wide variation in the terms proportional to y ,  (-4.72 ~ q 5 ~ )  a t  low Pe and 
(-0.13 ~ q 5 ~ )  a t  high Pe, reflects the highly asymmetric particle distribution. At low 
Pe, the probability of a particle being within a certain distance is independent of the 
particle type. At high Pe, a particle of different density will interact with a test 
particle in a brief encounter and then move off, while a particle of the same density 
will remain in the vicinity until another particle intercepts the pair. For concentrated 
suspensions, interactions with three and more particles occur more frequently and 
the like-particle bias may not be as strong. Nonetheless, the dilute results remind us 
of the importance of the particle distribution in sedimenting suspensions. 

Despite the lack of quantitative agreeement, we emphasize that the stability 
criterion of Batchelor & Janse van Rensburg and Thiokas captures the qualitative 
behaviour of the bidisperse instability quite well. By contrast, the theory of Cox 
predicts that bidisperse suspensions are unconditionally unstable for all con- 
centrations and all density ratios. The only exceptions are for particles of widely 
different size and particles of exactly equal density. Cox notes that his theory 
requires horizontal perturbations in concentration, while that of BJR requires 
vertical perturbations. While this is true, it omits an important difference between 
the theories. Given an arbitrary initial perturbation broken into its component 
Fourier modes eimxeing, Cox's theory predicts stability for all modes except n = 0; 
that is, it requires a perturbation which is non-zero in the mean. Batchelor & Jansen 
van Rensburg and Thiokas predict instability for all m,n except n = 0. The 
simultaneous growth of all modes would lead to a fine-scale graininess in the initial 
growth phase -exactly as observed in the experiments of Batchelor & Janse van 
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Rensburg. On balance, we feel that the evidence clearly supports the theory of 
Batchelor & Jansen van Rensburg and Thiokas. It is very likely that the irreversible 
particle interactions discussed by Cox are important in the dynamics of the 
instability, but only in the later stages when macroscopic convective motion ensues. 

This work was supported in part by the National Science Foundation. 
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